Tables

Table SM24-1:	Summary of key observed past and present annual mean temperature trends in Asian
	countries/regions.
Table SM24-2:	Summary of key observed past and present annual mean precipitation trends in Asian countries/regions.
Table SM24-3:	Summary of projected changes for a variety of climate parameters.
Table SM24-4:	Summary of key observed past and present climate change impacts in Asia
Table SM24-5:	Summary of key projected climate change impacts in Asia.
Table SM24-6:	Summary of recent literature from East Asia (China and Japan) reporting phenological
	observations in relation to recent climate change.
Table SM24-7:	Examples of adaptation options for agriculture in Asia.
Table SM24-8:	Examples of adaptation options for securing livelihoods in Asia.
Table SM24-9:	Recent publications on changes in Central Asian glaciers.

Figures

Figure SM24-1: Observed and simulated variations in past and projected future annual average temperature (left)

and precipitation (right) over land areas of the regions shown in Figure 24-1.

Figure SM24-2: Geographical boundary and major cities of the LMB (MRC, 2009).

Table SM24-1: Summary of key observed past and present annual mean temperature trends in Asian countries/regions.

Sub-region Countries/Regions		Unit	Change (Period)	Reference
Central	Kazakhstan	Kryukova et al., 2009		
Asia	Kyrgyzstan	°C	+1.6 (1901-2000)	Iliasov et al., 2003
	Tajikistan	°C/10y	+0.1 to +0.2 (1940-2005)	Karimov et al., 2008
East Asia	Hong Kong	°C/10y	+0.12 (1885-2008), +0.16 (1947-2008), +0.27 (1979- 2008)	Ginn et al., 2009
	Japan	°C/100y	+1.15 (1898-2010)	JMA, 2011
	China	°C/10y	0.09±0.017 (1900-2006), 0.26±0.032 (1954-2006), 0.45±0.13 (1979-2006)	Li et al., 2010
		°C/10y	+0.03 to +0.120 (1906-2005), +0.03 to +0.120 (1908- 2007)	Ren et al., 2012
	South Korea	°C	+1.87 (1908-2008), +1.37 (1954-2008), +1.44 (1969- 2008)	Kim et al., 2010
	Taiwan	°C/10y	+0.14 (1911-2009), +0.19 (1959-2009), +0.29 (1979- 2009)	Hsu <i>et al.</i> , 2011
North Asia	Mongolia	°C	+2.14 (1940-2005)	Dagvadorj et al., 2009
	Russia	°C	+1.29 (1907-2006), +1.33 (1976-2006)	Anisimov et al., 2008a
South Asia	Afghanistan	°C	+0.6 (1960-2008)	Savage et al., 2009
		°C/10y	+0.13 (1960-2008)	
	Bangladesh	°C/10y	+0.097 (1958-2007)	Shahid, 2010
	India	°C	+0.56 (1901-2009)	Attri and Tyagi, 2010
		°C/100y	+0.68 (1880-2000)	Lal, 2003
		°C/y	+0.0056 (1948-2008)	Ganguly, 2011
	Nepal	°C/y	+0.06 (1977-1994)	Shrestha et al., 1999
	Pakistan	°C	+0.57 (1901-2000), +0.47±0.21 (1960-2007)	Chaudhry et al., 2009
		°C/10y	+0.099 (1960-2007)	
	Sri Lanka	°C/y	+0.005 to +0.035 (1961-2000)	Iqbal, 2010
	°C/10y		+0.3 to +0.93 (1869-2007), +0.75 to +0.94 (1910-2007)	De Costa, 2008
Southeast	heast The Philippines °C +0.648 (1951-201		+0.648 (1951-2010)	PAGASA, 2011
Asia	Asia °C/y -		+0.0108 (1951-2010)	
West Asia	Armenia	°C	+0.85 (1935-2007)	Gabrielyan et al., 2010
Tibetan Plat	eau		+1.8 (0.36/10y) (1961-2007)	Wang et al., 2008
		°C/10y	+0.447 (1962-2001)	Xu et al., 2008

Table SM24-2: Summary of key observed past and present annual mean precipitation trends in Asian countries/regions.

Sub-region	Countries/Regions	Unit	Change (Period)	Reference
Central Asia	Kazakhstan	No defini	ite national trend. (1936-2005)	Kryukova et al., 2009
	Kyrgyzstan	mm	+23 (+6%) (1901-2000)	Iliasov et al., 2003
	Tajikistan *plains region	%	+8 (insignificant) (1940-2005)	Karimov et al., 2008
	*mountainous region	%	-3 (insignificant) (1940-2005)	Karimov et al., 2008
	Turkmenistan	mm/10y	+12 (1931-95)	MNPT, 2000
East Asia	Hong Kong	mm/10y	+25 (1885-2008)	Ginn et al., 2009
	Japan	No clear	trend (1898-2008)	MEXT et al., 2009
	South Korea	%	+5.6 (2001-2008)	Kim et al., 2010
North Asia	Mongolia	mm/y	-0.1 to -2.0 (1940-2005)	Dagvadorj et al., 2009
	Russia	mm/10y	+7.2 (1976-2006)	Anisimov et al., 2008a
South Asia	Afghanistan	mm/m	-0.5 (1960-2008)	Savage et al., 2009
		%/10y	-2 (1960-2008)	
	Bangladesh	mm/y	+5.53 (1958-2007)	Shahid, 2010
	India	No signif	icant national trend (1901-2009)	Attri and Tyagi, 2010
	Pakistan	mm	+61 (1901-2007), -156 (1901-54), +35	Chaudhry et al., 2009
			(1955-2007)	
	Sri Lanka	mm/y	-1.55 to -19.06 (1961-2000)	Iqbal, 2010
Southeast Asia	Indonesia *Brontas Catchment	mm/y	-1.23 to -24.25 (1955-2005)	Aldrian and Djamil, 2008
West Asia	Armenia	%	-6 (1935-2007)	Gabrielyan et al., 2010
Tibetan Plateau	1	mm/y	+0.614	Xu et al., 2008

Table SM24-3: Summary of projected changes for a variety of climate parameters.

Sub-region	T/P	Projected changes
Central and North (see	T	Central: Similar warming magnitude in winter and summer.
WGI AR5 section		Northern: A stronger warming trend than the global mean trend during winter.
14.8.8)	P	Central: Likely increase
		Northern: Very likely increase.
		Central and Northern: Likely increase in extremes
East (see WGI AR5	T	Very likely longer duration, more intense and more frequent heat waves/hot spells in summer and
section 14.8.9)		very likely decrease in frequency of very cold days
	P	Increase in summer precipitation over East Asia with an intensified East Asian summer monsoon
		(medium confidence)
		Likely increase over East Asia during the Meiyu-Changma-Baiu season in May to July and very
		likely increase in extremes over the eastern Asian continent in all seasons and over Japan in
		summer under RCP4.5 scenario (low confidence).
West (see WGI AR5	T	Very likely that temperatures will continue to increase.
section 14.8.10)	P	Overall reduction (medium confidence)
South (see WGI AR5	T	Increase (high confidence)
section 14.8.11)	P	Increase in summer monsoon precipitation (medium confidence)
Southeast (see WGI	T	Very likely increase with substantial subregional variations.
AR5 section 14.8.12)	P	Moderate increase in rainfall, except on Indonesian islands neighboring the Southeast Indian Ocean
		(medium confidence).
		Strong regional variations because of terrain.
T: Temperature, P: Pro	ecipita	ation

Table SM24-4: Summary of key observed past and present climate change impacts in Asia.

Sub-Region	Countries/Regions (Area)	Parameters: Observed changes	Period	References
Central Asia K K K K K K K K K	Kazakhstan (Steppe region in north)	Normalized Difference Vegetation Index (NDVI): Decline (browning)	1982-2008	De Jong et al., 2012
	Kazakhstan (Northern Tien Shan Mountains)	Permafrost temperature at depths of 14-25 m: +0.3 to +0.6°C	1974-2004	Marchenko et al., 2007; Zha
		Active layer thickness: +23%		et al., 2010
	Uzbekistan (Zerafshan River Basin)	Water monthly discharge: Significant increases in spring and decreases in summer	1923-2006	Olsson et al., 2010
	Kazakhstan, Uzbekistan, Kyrgyzstan (Main	Surface area change: -49.62% (Aral Sea), -75.7% (Balk hash), -2.61% (Ebinur), -8.37%	1975-2007	Bai et al., 2012
	lakes)	(Issyk-Kul) +5.85% (Zaysan), -9.18% (Bosten)		
East Asia	East Asia north of 23°N	<i>Tree growth:</i> Tree-ring data suggests recent summer temperatures have exceeded those for warm periods of similar length over the past 1210 years.		Cook et al, 2013
	Japan (Upper part of Kurobe Dam, Toyama)	Runoff: Decreased by 40 mm, slightly decreased and more in winter and spring, less in summer	1974-2004	Shinohara et al., 2009
	Japan (Multiple sites)	Spring leafing and flowering: Earlier by < 3 days per decade	Last 60 years	Ogawa-Onishi and Berr
		Changes in species distributions: Northwards by < 126 km per decade	Last 50-70 years	2013
	Japan (Seas around Japan)	Changes in species distributions: Northwards expansion of fish, corals and algae.	Recent decades	Nagai et al., 2011; Yamano al., 2011; Tian et al., 2012.
	China (Shiyang River basin)	Streamflow: Five of eight catchments showing significant decreasing trends	1950-2005	Ma et al., 2008
	China (Dongjiang River)	Runoff: No significant change. Clear increasing trend at two of three stations in low-flow period	1956-2000	Liu et al., 2010
	China (Tarim River Basin)	Streamflow: Three of four rivers with increasing streamflow except Akesu River	1960-2005	Zhang et al., 2010
		Mainstreams runoff: Decreased by 41.59% (1970s), 63.77% (1980s), 75.15% (1990s)	1957-2003	Hao et al., 2008
		Runoff: In 1990s runoff from headwaters of Aksu and Yarkand River increased by 10.9%	1955-2000	Chen et al., 2007
	China (Baimashi Basin)	Runoff: Decreased by 1.88% per year, decreasing from 1960s	1950-2000	Wang et al., 2010
	China (Upper reaches of Tarim River Basin)	Runoff: Aksu River showed a significant increasing trend by 10.9%. Three of four rivers showed an increasing trend with one showing a subtle reduction	1958-2004	Chen et al., 2009
	China (Laohahe Basin)	Runoff: Runoff in 1980-2008 decreased by 36% compared with 1964-1979	1964-2008	Jiang et al., 2011
	China (Hun-Tai River Basin)	Streamflow: Downward trends	1961-2006	Zhang et al., 2011
	China (Kaidu River Basin)	Runoff: Increasing with rate of 8.4 mm/decade; 1994-2009 increased 26.4% compared to 1960-1993	1960-2009	Chen et al., 2013
	China (Haihe River Basin)	Runoff: Significant downward trends	1957-2000	Wang et al., 2011
	China (Pearl River, Yangtze River, Yellow River, Liao River, Songhua River)	Runoff: Increased by 10% (Pearl River), had little change (Yangtze River), decreased by 80% (Yellow River), decreased by 54% (Liao River), decreased by 14% (Songhua River)	1951-2000	Xu et al., 2010
	China (Qinghai-Tibetan Plateau)	Active layer thickness along Qinghai-Tibetan Highway: Mean rate of +7.5 cm/year	1995- 2007	Wu and Zhang, 2010
		Position of lower altitudinal limit of permafrost in north: Moved up by 25 m	Last 30 years	Cheng and Wu, 2007;
		Position of lower altitudinal limit of permafrost in south: Moved up by 50-80 m	Last 20 years	Li et al., 2008
		Total area of glaciers of QTP and surrounding areas: Decreased by c. 9%, from 13363 \pm 668 km² to 1213 \pm 607 km²	1970s-2000s	Yao et al., 2012
	China (Whole country)	Start of plant growth in spring: Earlier start by c. 2 days per decade	Last 30 years	Table SM24-6
	China	Rice yield: Positive correlation to temperature.	1981-2005	Zhang et al., 2010
	Taiwan (Mountains)	Plant distributions: Upper limits shifted upwards by 3.6 m per year	1906-2006	Jump et al., 2012
North Asia	Mongolia (Kherlen River Basin)	Underground water storage: No evidence for long-term storage change	1947-2006	Brutsaert et al., 2008
	Mongolia (Khentey Mountains)	Growth of Siberian larch forest in forest-steppe ecotone: a. tree-ring analysis shows a decreasing annual increment. b. Regeneration of larch decreased	1940s -2010	Dulamsuren et al., 2010a; 2010b
	Mongolia (Hovsgol Mountain region)	Mean annual permafrost temperature at 10 m depth: Increased on average by 0.02-0.03°C/year	Last 10-40 years	Sharkhuu <i>et al.</i> , 2008; Zhao <i>et al.</i> , 2010
	Mongolia (Hangai and Khentei Mountain regions)	Mean annual permafrost temperature at 10 m depth: Increased on average by 0.01-0.02°C/year	Last 10-40 years	Sharkhuu <i>et al.</i> , 2008; Zhao <i>et al.</i> , 2010

	Russia, East of Urals (Siberia)	Forest-tundra ecotone: a. larch stands crown closure, and larch invasion into tundra at a rate of 3-10 m/year. b. Shrub expansion in arctic tundra as result of an increase in shrub growth.	1970-2000	Kharuk <i>et al.</i> , 2006; Myers-Smith <i>et al.</i> , 2011; Blok <i>et al.</i> , 2011
		Distribution of dark needle conifers (DNC), Siberian pine, spruce and fir: Invasion of DNC and birch into larch habitat	1980-2010	Kharuk <i>et al.</i> , 2010a, b; Osawa <i>et al.</i> , 2010; Lloyd <i>et al.</i> , 2011
		Permafrost temperature at zero annual amplitude: Warming of permafrost in most permafrost observatories in Asian Russia by 0.5-2°C.	1970s-1990s	Romanovsky <i>et al.</i> , 2008, with supplement;
		Permafrost temperature at zero annual amplitude: No significant warming.	2000-2007	Romanovsky et al., 2010
		Permafrost temperature at zero annual amplitude: Warming of permafrost resumed at many locations predominantly near Arctic coasts.	2007-2008	
	Russia, East of Urals (Asian Arctic)	Average erosion rate of coastline: 0.27-0.87 m/year	-	Lantuit et al., 2012
	Russia, East of Urals (Ural Mountains)	Area of glaciers: Decreased by 20-30% in total	1953-1981	Anisimov et al., 2008b
	Russia, East of Urals (Kodar Mountains)	Area of glaciers: Exposed ice area (EIA) declined by c. 44%	ca. 1963-2010	Stokes <i>et al.</i> , 2013
		Area of glaciers: EIA declined by c. 40%, from 11.72 ± 0.72 km ² to 7.01 ± 0.23 km ²	1995-2010	
	Russia, East of Urals (Suntar Khayata Range)	Area of glaciers: Decreased by 19.3%	Mid. 20 th C 2003	Ananicheva et al., 2005, 2006
	Russia, East of Urals (Chersky Range)	Area of glaciers: Decreased by 28 %	1970-2003	Anisimov et al., 2008b
	Russia, East of Urals (Kamchatka)	Area of glaciers: Decreased for some glaciers, increased for others	Since Mid 19 th C.	Anisimov et al., 2008b
South Asia	India (Upper Indus Basin)	Water stress: No strong evidence for marked reduction in water resources	1961-2004	Archer et al., 2010
	India (Headwater of Kosi River)	Water resources: Reduction in groundwater recharge, 36% of springs have dried, heads of perennial streams have dried and water discharge in springs and streams has decreased considerably	1990-2010	Tiwari and Joshi, 2012
	India (Andaman Islands)	Coral health: Mass bleaching.	2010	Krishnan et al., 2011
	Nepal (Himalayan region)	Water resources: Significantly moving snowline		Karki <i>et al</i> . 2009
	Nepal (Shorong, Khumbu, Langtang, Dhaulagiri, Kanchenjunga)	River discharge: Decreasing trend in Karnali and Sapta Koshi; increasing trend in Narayani. No trend in southern rivers.	1970s-2000s	Shrestha and Aryal 2011
	Pakistan, India, Nepal, Bhutan (Himalayas)	Start of plant growth in spring: Earlier start by 1.9 days per decade	1982-2006	Shrestha et al., 2012
		Livelihoods: Leave farming due to repeated droughts	-	Kulkarni and Rao, 2008
Southeast	Republic Cambodia	Poverty: Loss of crops, income and fallows	-	Kulkarni and Rao, 2008
Asia	Indonesia (Province of Papua)	Area of mountain glaciers Puncak Jaya, Central Cordillera, New Guinea Island: Reduced from 19.3 km² to 7.3 km² (Mid 19 th C1972), reduced from 7.3 km² to 2.1 km² (1972-2002)	Mid 19 th C 2002	Prentice and Glidden, 2010; Allison, 2011
	Malaysia (Mt Kinabalu, Sabah)	Altitudinal distributions of moth species: Uphill shifts by average 83 m (upper) and 86 m (lower)	1965-2007	Chen et al., 2011
	Indonesia, Malaysia, Singapore	Coral health: Mass bleaching and subsequent mortality	2010	Guest et al., 2012
West Asia	Jordan	Wheat and barley yield: In 1999, total production and average yield for wheat and barley were lowest among years due low rainfall which was 30% of average.	1996-2006	Al-Bakri et al., 2010
	Azerbaijan, Georgia (Southern flank of Greater Caucasus Range)	Area of glaciers: Decreased by 31.2% in total	1895-2000	Anisimov et al., 2008b
	Iran, Iraq, Kuwait, Qatar, Saudi Arabia, UAE	Coral health: Mass bleaching and subsequent mortality	1996-2012	Coles and Riegl, 2013
Russia (East	Kyrgyzstan, Tajikistan, China, Mongolia, of Urals), Afghanistan (Altai-Sayan, Pamir, an Mountains)	Area of glaciers: Decreased on average by 10% Ice volume of glaciers: Decreased on average by 15%	1960-2009	Aizen, 2011; Aizen et al., 2006, 2007
East and Sou	,	Poverty: Disproportionately impacted by climate-related hazards	<u> </u>	Kim, 2011
	ttheast Asia (Mekong region)	Livelihoods: Increased migration due to environmental (e.g. rapid-onset disasters), social and economic reasons	-	Warner, 2010; Black <i>et al.</i> 2011

Table SM24-5: Summary of key projected climate change impacts in Asia.

Sub-Region	Countries/Regions (Area)	Parameters: Projected impacts	Scenario/GCM (RCM)/Period (Base year)	Reference
Central Asia	N. & E. Kazakhstan	Crop yield (cereal): Benefit from longer growing season, warmer winters and s	slight increase in winter precipitation	Lioubimtseva and Henebry,
Central Asia	W. Turkmenistan &	Crop yield (cotton): Negative impacts from frequent droughts	2009	
	Uzbekistan			
East Asia Jap Ho	Japan (Tohoku and	River discharge: 200% higher in February, 50-60% lower in May.	A1B/AGCM/2080-2099 (1980-99)	Sato, Y. et al., 2012
	Hokuriku)			
	Japan	Rice transplanting date: Northward shift of isochrones of safe transplanting	A2/MRI-CGCM2 (RCM20) /2081-2100	Ohta and Kimura, 2007
		dates for rice seedlings.	(1971–2000)	
	China (Tarim River Basin)	Flow: Positive change 1.3-12.8% in BYBLK and 17.7-29.7% in DSK	A2, A1B, B1/18GCMs/2046-65 (1979-98)	Liu et al., 2011
	China (Poyang Lake)	Annual catchment inflow: Increased by 2.9% (A1B) and 6.5% (B1),	A1B, B1, A2/ ECHAM5/ 2011-50 (1961-	Ye et al., 2011
		decreased by 5.2% (A2).	2000)	
	China (Qinghai-Tibet	Permafrost area: Decrease by <19% (20-50 years since 1996), decrease by	+1°C in air temp. in 30 years since	Results of Li & Cheng
	Plateau)	58% (2099)	1996/HADCM2/20-50 years since 1996,	(1999) after Cheng & Wu
			2099 (1996)	(2007)
	China (Tibetan Plateau)	Alpine vegetation: Most replaced by forest and shrubland	A1B/Pattern-scaled output of multiple	Liang et al, 2012; Wang
			models/2070-2099 (1931-1960)	et al., 2013
	Southeastern China	Rice production: yield would change on average by 7.5% to 17.5% (-10.4%	10 climate scenarios, relative to 1961–1990	Tao and Zhang, 2013a
		to 3.0%), 0.0% to 25.0% (-26.7% to 2.1%), and -10.0% to 25.0% (-39.2% to	levels	
		-6.4%) during the 2020s, 2050s, and 2080s, respectively, in response to		
		climate change, with (without) consideration of CO2 fertilization effects		
	China (Huang-Hai Plain in	Winter wheat yield: Increase by 0.2 Mg/ha (2015-45), increase by 0.8 Mg/ha	A2, B2/HadCM3/2015-45,2070-99 (1961-	Thomson et al., 2006
	northeast China)	(2070-99)	90)	
			Liu et al., 2010	
	Plain)	on average by -10.33%. b. a. with CO_2 fertilization: +4.46±14.83% (2°C), -5.78		
	South Korea	Paddy irrigation requirements: Decrease by 1-8%	A2, B2/HadCM3(RCMs)/ 2010-2039, 2040-	Chung et al., 2011
		Volumetric irrigation demand: Decrease by 4-10%	2069, 2070-2099 (1961-90)	
	South Korea (Soyang,	Annual mean streamflow: Reduced by 7.6%	2×CO ₂ /YONU GCM (WGEN)/ 2031-50	Kim et al., 2007
	Chungju, Daecheong Basins)		(1961-80)	
	China, Taiwan province	Runoff: Future runoff may be higher during wet season and lower during dry	A2, B2/CCSR, CGCM2, CSIRO, ECHAM4,	Yu and Wang, 2009
	(Upstream catchment of	season.	GFDL, HADCM3/2010-39; 2040-69; 2070-	
	Shihmen reservoir)		99 (1973-2000)	
	China (Taiwan province)	Annual renewable water resource: Drop by 12.3%	A1B/JAM/MRI TL 959L60/2080-99 (1949-	Tsai and Huang 2012
			2000)	
		Water resource condition for five levels: good (L1), good (L2), fair(L3), poor		Tsai and Huang, 2011
		(L4), very poor (L5): No change in northern and eastern parts with L2; visibly	[98]	
		deteriorate in southern part with L3 to L4; central part will be L4		
North Asia		Tundra area: Decrease by 93% as result of boreal forest expansion	+1% GHG per year/HADCM3 (GGa1)/2090-	Tchebakova et al., 2010
	(Siberia)	Steppe area: Increase by 27%	2100 (1964)	
		Tundra area: Decrease by 3% as result of boreal forest expansion	+1°C in annual mean global surface	Golubyatnikov &
	Russia)	Steppe area: Decrease by < 65%	temp./ECHAM4/OPYC3, HadCM3a, IAP	Denisenko, 2007
			RAS CM/Late 2030s - early 2050s (1961-90)	
	Russia, East of Urals (Asian	Coast recession rate: Increase by 1.5- to 2.6-fold	+2°C in annual mean global surface temp.	Pavlidis et al., 2007
	Arctic)		over 21st C., /2100 (c. 2000)	
	Russia, East of Urals (Arctic)		Various/Various/21st C.	Post et al, 2013; Kovacs
		Ice-dependent mammals: Population declines in some species		et al., 2011
	Russia (East of Urals)	Frequency of food production shortfalls: +3-4 years/decade in 2070s	A2, B2/ECHAM, HadCM3/2070s (1961-90)	Alcamo et al., 2007

South Asia	India(All)	Forests: 34-39% of forests to change forest type	A2, B2/HadRM3/2085 (1931-60)	Chaturvedi et al., 2011
	India (Indo-Gangetic Plains, Indore, Hyderabad, Dharwad)	Sorghum winter grain yield: Reduced by up to 7% by 2020, up to 11% by 2050, and up to 32% by 2080	A2a/HadCM3/2020, 2050, 2080 (1970-95)	Srivastava et al., 2010
	Pakistan(Swat & Chitral districts)	Wheat yield: -7% & -24% (Swat district), +14% & -23% (Chitral district).	1.5 & 3°C in temp./ (1976-2000)	Hussain and Mudasser, 2007
Southeast Asia	Thailand (Chao Phraya River basin)	River discharge: decreased 60% in January, no significant change in September	A1B/MRI-AGCM+TRIP/2075-2099(1979-2003)	Champathong et al., 2013
	Vietnam (Mekong River delta)	About 7% of Vietnam's agricultural land may be submerged by 1 m sea level rise	1 meter sea level rise scenario (no GCMs used)	Dasgupta et al., 2009
West Asia	Iran (all)	Deep aquifer recharge: Decreases by 50-100% in groundwater recharge in eastern region	A1B; B1; A2/CGCM 3.1/2010-40, 2070- 2100 (1980-2002)	Abbaspour et al., 2009
	Jordan (Upper Jordan; Wadi Faynan)	Stream flows, flood flow and numbers: Decrease by 12%	A2/(HadRM3)/ 2071-2100 (1961–1990)	Wade et al., 2010
Eastern Mediterranean and Middle East region		Internal water resource: Decreases from 464 to 419 and 412 km ³ Runoff: -9.5% & -10% (Tigris-Euphrates River), -22% & -30% (Jordan River)	A1B /HadCM3 (PRECIS)/2040-69, 2070-99 (1961-90)	Chenoweth et al., 2011
North Asia, East Asia, Central Asia	Asian Russia, China, Mongolia, Kazakhstan (Permafrost area in Asia)	Permafrost degradation: Spread from southern and low-altitude margins, advancing northwards and upwards	Multiple scenarios/Multiple GCMs/21 st C.	Multiple references, see section 24.4.2.3.
North, East Asia	Asian Russia, China (Siberia and Tibet)	Permafrost distribution: Permafrost will remain only in Central and Eastern Siberia and in part of Tibet	A1B, A2/IAP RAS CM/Late 21st C.	Eliseev et al., 2009
West, South, Southeast Asia (all countries with tropical coasts)		Coral health: Large declines in structure and diversity	Several/Several/2050	Hoegh-Guldberg, 2011; Burke et al., 2011
Asia		Poverty: Negative impact on rice crop, increase in food price and cost of living GTAP Model under three scenarios resulting low, medium and high productivi	Hertel et al., 2010	
Central, East (Tibet/Hima	, South, Southeast Asia layas)	Livelihoods: Loss of livelihoods of indigenous people from declining alpine by	Salick and Ross, 2009; Xu et al., 2009	

Table SM24-6: Summary of recent literature from East Asia (China and Japan) reporting phenological observations in relation to recent climate change. Studies differ in objectives, methods, locations, and study periods. The source publications should be consulted for details. Phenological responses are given in days per decade (d/dec), unless otherwise indicated, with negative values indicating an earlier occurrence of the event (i.e. an advance), and positive values a later occurrence (i.e. a delay). The 'major influence' column shows the environmental variable that the authors of the study considered most important.

Location	Latitude	Period	Type of data	Variable	Species	Response (timing)	Major influence	Source
China	All	1982-2006	observations + NDVI	spring green-up		-2.9 +/-2.3 d/dec	Temperature	Ma and Zhou, 2012
China	Most	1952-2007	observations	first leaf date	20 spp. broadleaved deciduous	-1.1 d/dec	Temperature	Ge et al., 2013a
China	most	1960-2009	observations	first leaf date	4 tree spp.	-1.1 d/dec	Temperature	Dai <i>et al.</i> , 2013a
China	Most	1960-2009	observations	leaf coloring date	4 tree spp.	+0.9 d/dec	Temperature	Dai et al., 2013a
China	>35°N and <35°N	1951-2007	meteorological data	thermal growing season length		+2.3 d/dec (N); +1.3 d/dec (S)	Temperature	Song et al., 2010
China	>35°N and <35°N	1951-2007	meteorological data	start of thermal growing season		-1.7 d/dec (N); -0.6 d/dec (S)	Temperature	Song et al., 2010
Eastern China	18-54°N	1982-2006	GIMMS-NDVI	spring green-up	all	Advance in most areas except northeast China plain	Temperature	Yu et al., 2013a
Xishuangbanna, China	21°N	1973-1999	observations	leaf budburst	21 species	+14 d (7 spp.)	Temperature	Zhao et al., 2013
Xishuangbanna, China	21°N	1973-1999	observations	growing season length	21 species	+35 d (4 spp.)	Temperature	Zhao et al., 2013
Xishuangbanna, China	21°N	1973-1999	observations	first flowering	21 species	Varied	temperature, rainfall	Zhao et al., 2013
China	23-46°N	1952-2007	observations	first leafing	Fraxinus chinensis	NE -1.5, N 2.0, NW, -1.4, E - 0.9, C -1.1, S-0.3, SW -0.6 d/decade	Temperature	Wang et al., 2012
Yangtze River delta, China	28-32°N	1834-2010	observations	flowering	14 ornamental species	Delayed 1843-1893, advanced 1893-1905, 1990-2010.	Temperature	Zheng et al., 2013
temperate China	28-54°N	1982-2006	GIMMS-NDVI	spring green-up	all biomes	Advanced to mid-late-1990s, then delayed to 2006	Temperature	Wu and Liu, 2013
temperate China (incl. Tibet)	c. 28-54°N	1982-1998	GIMMS NDVI	start of growing season	all	-6.8 d/dec 1982-1998, +21.3 d/dec 1998-2005	temperature, snow depth	Yu et al, 2013b
China	>30°N	1986-2005	observations	leaf unfolding	Ulmus pumila	-4.0 d/dec	Temperature	Chen and Xu, 2012
China	>30°N	1986-2005	observations	leaf fall	Ulmus pumila	+2.2 d/dec	Temperature	Chen and Xu, 2012
China	>30°N	1982-2010	GIMMS- NDVI3g	spring green-up	all	-1.3+/-0.6 d/dec	Temperature	Cong et al., 2013
N China	33-53°N	1960-2009	observations + modeling	first leaf unfolding	4 deciduous tree spp.	-1.4 to -1.6 d/dec	Temperature	Xu and Chen, 2013
Xi'an, China	34°N	1963-1996 vs. 2003-2011	observations	first leafing	42 woody species	-5.5 d between periods	Temperature	Dai et al., 2013b
Xi'an, China	34°N	1963-1996 vs. 2003-2011	observations	leaf coloring	42 woody species	+16.1 d between periods	Temperature	Dai et al., 2013b
Xi'an, China	34°N	1963-1996 vs. 2003-2011	observations	first flowering	42 woody species	-10.2 d between periods	Temperature	Dai et al., 2013b

Beijing & Xi'an	34-40°N	1963-2010	observations	leaf coloring	Acer mono	+4-5 d/dec	Temperature	Ge et al., 2013b
temperate China	34-47°N	1963-2009	observations	first flowering	210 species	NE -1.5 d/dec, N -2.2 d/dec	Temperature	Dai et al., 2013c
Inner Mongolia, China	37-53°N	1982-2006	observations	first flowers	Populus tomentosa	-2.9 (-6.5-+1.5) d/dec	temperature	Wu et al., 2009
Inner Mongolia, China	37-53°N	1982-2006	observations	leaf fall	Populus tomentosa	+3.1 (-5.8-+9.5) d/dec	temperature	Wu et al., 2009
Beijing	40°N	1963-2008	observations	growing season length	Castanea mollissima	+4.3 d/dec	temperature	Guo et al., 2013
Beijing	40°N	1963-2008	observations	leaf coloring	Castanea mollissima	not signif.	temperature	Guo et al., 2013
Beijing, China	40°N	1963-2008	observations	first flowers	Castanea mollissima	-1.6 d/dec	temperature	Guo et al., 2013
Beijing, China	40°N	1963-1989, 1990-2007	observations	First flowers	48 woody species	-5.4 d between periods	temperature	Bai et al., 2011
NE China	40-52°N	1980-2005	observations	Leafing	11 woody species	-2.3 d/dec	temperature	Li and Zhou, 2010
NE China	40-52°N	1980-2005	observations	leaf yellowing	11 woody species	+1.9 d/dec	temperature	Li and Zhou, 2010
Inner Mongolia, China	42°N	2006-2009	experimental warming (day and night)	flowering and fruiting	8 species in temperate steppe	-0.8 d (fl), -0.7 d (fr) with night warming	temperature	Xia and Wan, 2013
Northeast China	45-53°N	2001-2009	MODIS EVI	start of season	broadleaved deciduous forest	Advance	temperature	Cai et al, 2012
Tibet, China		1961-2000	herbarium collections	flowering	41 species	-5.0 d/dec	temperature	Li et al., 2013
Tibet, China		1982-2006	GIMMS-NDVI	spring green-up	all	Advance to 1999 then delay	temperature	Piao et al., 2011
Tibet, China		1982-2006	GIMMS-NDVI	spring green-up	grassland	advance to 1990s then delay	temperature	Yu et al., 2012
Tibet, China		1982-2006	GIMMS-NDVI	senescence and end of growing season	grassland	mostly earlier	temperature	Yu et al., 2012
Tibet, China		1999-2009	SPOT-VGT NDVI	start of growth season	grassland	-6 d/dec	-	Ding et al., 2013
Tibet, China		1999-2009	SPOT-VGT NDVI	end of growing season	grassland	+2 d/dec	-	Ding et al., 2013
Tibet, China		1982-2011	GIMMS & SPOT-VGT NDVI	spring green-up		-10.4 d/dec	temperature	Zhang et al., 2013a
Tibet, China		1982-2006	GIMMS-NDVI	spring green-up	all	earlier in most areas	temperature	Panday and Ghimire, 2012
Tibet, China		1994-2005	observations	growing season	Festuca rubra, Kobresia pygmaea, Poa pratensis	Longer	precipitation	Zhang et al., 2013b
Japan	31-44°N	1969-1989, 1990-2005	observations	first flowers	Prunus mume	-7.0 (-22.8 to +8.0) d between periods	temperature	Doi 2007
Japan	31-44°N	1953-2005	observations	leaf budburst	Morus bombycis	-1.3 d/dec	temperature	Doi 2012
Japan	31-44°N	1953-2005	observations	leaf fall	Morus bombycis	+2.4 d/dec	temperature	Doi 2012
Japan	33-38°N	1953-2005	observations	leaf budburst	Gingkgo biloba, Morus bombycis, Salix babylonica, Camellia sinensis	-2.7 d/dec	temperature	Doi and Katano, 2008
Kyoto, Japan	35°N	812-2005	observations	peak flowering	Prunus jamasakura	general advance after 1820s	temperature	Aono and Kazui, 2008

Japan	36-41°N	1977-2004	observations	budburst	Malus pumila var. domestica	-1.8 to -3.6 d/dec	temperature	Fujisawa and Kobayashi, 2010
Japan	36-41°N	1977-2004	observations	flowering	Malus pumila var. domestica	-2.1 to -3.5 d/dec	temperature	Fujisawa and Kobayashi, 2010
Japan	42°N	13 years	experimental soil warming	leaf phenology	7 understory species	variable between species	temperature	Ishioka et al., 2013

Table SM24-7: Examples of adaptation options for agriculture in Asia.

Crop	Country/ Regions	Potential Adaptation strategies	Benefits/ Co-Benefits	References
Wheat	General	Conservation agriculture (reductions in tillage, surface retention of adequate crop residues, and diversified, economically viable crop rotations)	Improve rural incomes and livelihoods by reducing production costs, managing agroecosystem productivity and diversity more sustainably, and minimizing unfavorable environmental impacts	Ortiz et al., 2008
Wheat	Pakistan	Development of short duration and high yield varieties of wheat.	Can withstand climatic anomalies expected in future	Hussain and Mudasser 2007
Wheat	Indo- Gangetic Plains, India	Development of heat-tolerant wheat germplasm, as well as cultivars.	Better adapted to heat and conservation agriculture	Ortiz et al., 2008
Barley; wheat	Jordan	Soil water conservation. Selection of drought tolerant genotypes with shorter growing seasons.	Increase available water to crop	Al-Bakri <i>et al.</i> , 2010
Sorghum	India	Changing variety and sowing date	Reduce impacts on monsoon sorghum to about 10%, 2% and 3% in 2020 scenario. Reduced impacts on winter crop to 1–2% in 2020, 3–8% in 2050 and 4–9% in 2080.	Srivastava et al., 2010
Rice	Sri Lanka	Traditional approaches for resolving water stress, such as increasing water use efficiency, water harvesting and/or reducing cropped areas. Earlier planting and shorter duration varieties to avoid impacts of less rainfall in January and February.		De Silva et al., 2007.
Rice	China	Shifts in planting dates and automatic application of irrigation and fertilization. Selection for more temperature-tolerant cultivars and later-maturing cultivars to take advantage of longer growing seasons		Tao et al., 2008
Corn	China	Using high-temperature sensitive varieties. Early planting, fixing variety growing duration, and late planting	Using high-temperature sensitive varieties, maize yield could increase on average by 1.0-6.0%, 9.9-15.2%, and 4.1-5.6%, by adopting adaptation options of early planting, fixing variety growing duration, and late planting, respectively	Tao and Zhang, 2010
General	India	Water harvesting		Kelkar et al., 2008
General	South Asia	Increasing livestock production relative to crops. Selection of crop varieties. Livelihood diversification		Morton, 2007
General	Central Asia	Replacement of existing network of open irrigation canals by more efficient drip irrigation systems. Development of early warning systems, such as drought forecast, pest and epidemic disease forecasts, and water quality monitoring systems.	Could significantly reduce evaporative water loss, while simultaneously improving crop productivity, reducing soil salinization, and decreasing risks of water contamination and transmission of vector-borne and waterborne diseases.	Lioubimtseva and Henebry, 2009
General	West Asia	Changing of cropping systems and patterns, switching from cereal-based systems to cereal-legumes and diversifying production systems into higher value and greater water use efficient options. Using supplementary irrigation systems, more efficient irrigation practices and adaptation and adoption of existing and new water harvesting technologies. Development of more drought and heat tolerant germplasm using traditional and participatory plant breeding methodologies and better predictions of extreme climatic events.		Thomas, 2008
General	Russia	Crop substitution		Alcamo et al., ,2007,

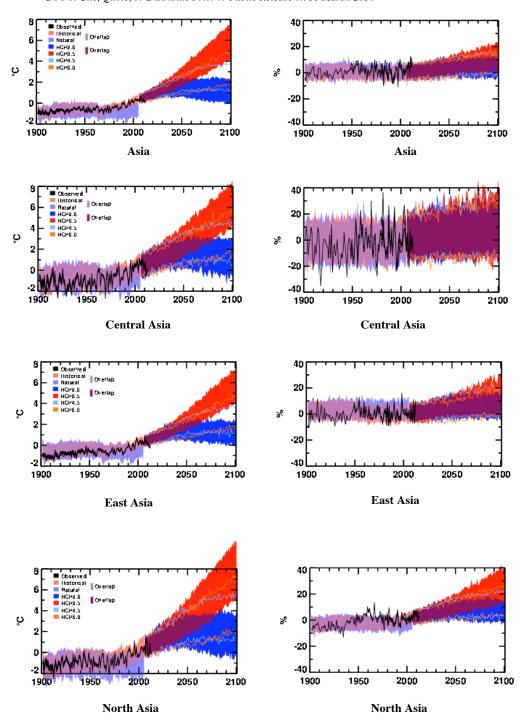

		Expanding irrigated agricultural areas Strategic food reserves, Improving management, Monitoring and early warning systems, Food imports from abroad.	
General	Philippines	Crop diversification; change of crop varieties, use of water conservation practices	Peras et al., 2008; Lasco et al., 2011
General	General	Cultivars with multiple resistance to insects and diseases	Sharma et al., 2010

Table SM24-8: Examples of adaptation options for securing livelihoods in Asia.

Aspect/	Country/	Potential Adaptation	Benefits/ Co-Benefits	References
Issues	Regions	strategies		
Delay and shortfall in rainfall Indonesia		Access to credit and public works project	Able to protect food expenditure in the face of weather shocks	Skoufias et al., 2011
General (droughts, floods etc.)	General	Weather index insurance, cattle insurance, seed banks, credit facilities, assisted migration, cash for work	Poverty-centered adaptation, creation of assets and access to resources	Barrett et al., 2007; Tanner and Mitchel, 2008; Jarvis et al., 2011
General	General	Assisted migration	Build financial, social and human capital	Barnett and Webber, 2010
General	Vietnam	Yield growth and improving agriculture labour productivity	Rural poverty reduction, livelihood diversification	Janvry and Sadoulet, 2010
Droughts and floods	Philippines	Bundling of improved varieties and agronomic practices and combination of production and market support	Economic benefits and social learning	Acosta-Michlik and Espaldon, 2008
General	Asia Community based adaptation Capture information at the grassroots, help integrating disaster risk reduction, development, and climate change adaptation, connect local communities and outsiders, and address the location-specific nature of adaptation.		van Aalst et al., 2008; Heltberg et al., 2010; Rosegrant, 2011	
General	Asia	Forest management	Resilient livelihoods, buffer from shocks	Chhatre and Agrawal, 2009
General	Asia	Securing rights to resources, community forest tenure rights	Resilient livelihood benefits to the poor indigenous and traditional people	Macchi et al., 2008; Angelsen, 2009
Biodiversity loss	Tibet	Greater involvement of traditional and indigenous people in climate change adaptation decision making	Indigenous knowledge from the years of living in close harmony with nature	Byg and Salick, 2009; Salick and Ross, 2009

Table SM24-9: Recent publications on changes in Central Asian glaciers.

Region	Period	Initial area (km²)	Area change, km ² (%)	References
Akshiirak (Inner Tien Shan)	1977-2001	406.8	-93.6(-23)	Khromova et al., 2003
Akshiirak (Inner Tien Shan)	1977-2003	406.8	-35.15 (-8.6)	Aizen et al., 2007
ZailiyskiyAlatau (Northern Tien Shan)	1955-1990	287.3	-81.8 (-29)	Vilesov & Uvarov, 2001
ZailiyskiyAlatau (Northern Tien Shan)	1979-1999	198.37	-34.2 (-17.3)	Bolch, 2007
Sokoluk R. basin, Kirgizkiy range (Northern Tien Shan)	1963-1986	31.7	-4.2 (-13.3)	Niederer et al., 2008
	1986-2000	27.5	-4.7 (-17.1)	
Gl.No. 1, Urumqi (Eastern Tien Shan)	1962-2003	1.94	-0.24 (-12.4)	Ye et al., 2005
Terskey-Alatoo (IssikKul Lake Basin, Northern Tien Shan)	1971-2002	245	-18 (-8)	Narama et al., 2006
Aksu R. basin (Kokshaaltau, Central Tien Shan)	1963-1999	1760	-58.6 (-3.3)	Li et al., 2006
Kaidu R. basin (Tarim R. Basin ,Central Tien Shan)	1963-2000	333	-38.5 (-11.6)	Liu et al., 2006
Central Tien Shan, Chinese territory	1960s- 1999	2093.8	-96.3 (-4.6)	Ding et al., 2006
Tien Shan (all mountain system)	1960s-2008	17,679	-1,172 (6.6%)	Aizen, 2011
Altai (all mountain system)	1960s-2008	2,169	-127 (5.8%)	
Pamir (Amu Darýa R. Basin)	1960s-2008	14,095	-671 (4.8%)	Aizen, 2011

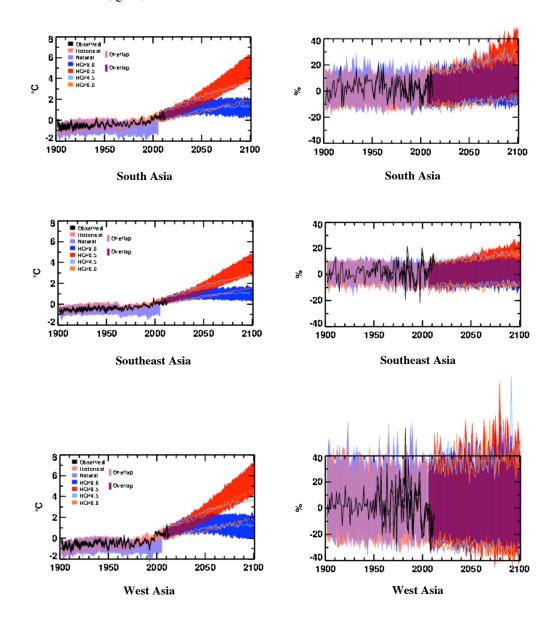


Figure SM24-1: Observed and simulated variations in past and projected future annual average temperature (left) and precipitation (right) over land areas of the regions shown in Figure 24-1. Black lines show various estimates from observational measurements. Shading denotes the 5-95 percentile range of climate model simulations driven with "historical" changes in anthropogenic and natural drivers (63 simulations), historical changes in "natural" drivers only (34), the "RCP2.6", "RCP4.5", and "RCP8.5" emissions scenarios (63 each), and the "RCP6.0" scenario (45). Data are anomalies from the 1986-2005 average of the individual observational data (for the observational time series) or of the corresponding historical all-forcing simulations. Further details are given in Box 21-3.

[Illustration to be redrawn to conform to IPCC publication specifications.]

Figure SM24-2: Geographical boundary and major cities of the LMB (MRC, 2009). [Illustration to be redrawn to conform to IPCC publication specifications.]

Chapter 24 OLSM References

- **Abbaspour,** K.C., M. Faramarzi, S.S. Ghasemi, and H. Yang, 2009: Assessing the impact of climate change on water resources in Iran. *Water Resources Research*, **45** (**10**), W10434.
- **Acosta-Michlik,** L. and V. Espaldon, 2008: Assessing vulnerability of selected farming communities in the Philippines based on a behavioural model of agent's adaptation to global environmental change. *Global Environmental Change*, **18** (4), 554-563.
- **Aizen,** V.B., V.A. Kuzmichenok, A.B. Surazakov, and E.M. Aizen, 2006: Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. *Annals of Glaciology*, **43**, 202-213.
- **Aizen,** V.B., E.M. Aizen, and V.A. Kuzmichonok, 2007: Glaciers and hydrological changes in the Tien Shan: simulation and prediction. *Environmental Research Letters*, **2** (4), 10.
- **Aizen,** V.B., 2011: Altai Glaciers. Pamir Glaciers. Tien Shan Glaciers. In: *Encyclopedia of Snow, Ice and Glaciers* [Singh, V.P., P. Singh, and U.K. Haritashya (eds.)]. Springer pp. 38-39; 813-815; 1179-1181.
- **Al-Bakri,** J., A. Suleiman, F. Abdulla, and J. Ayad, 2010: Potential impact of climate change on rainfed agriculture of a semi-arid basin in Jordan. *Physics and Chemistry of the Earth, Parts A/B/C*, **36** (**5–6**), 125-134.
- **Alcamo,** J., N. Dronin, M. Endejan, G. Golubev, and A. Kirilenko, 2007: A new assessment of climate change impacts on food production shortfalls and water availability in Russia. *Global Environmental Change*, **17** (3–4), 429-444.
- **Aldrian,** E. and Y.S. Djamil, 2008: Spatio-temporal climatic change of rainfall in East Java Indonesia. *International Journal of Climatology*, **28** (**4**), 435-448.
- **Allison,** I., 2011: Papua. In: *Encyclopedia of Snow, Ice and Glaciers* [Singh, V.P., P. Singh, and U.K. Haritashya (eds.)]. Springer, Dordrecht, Netherlands, pp. 815-817.
- **Ananicheva,** M.D., M.M. Koreisha, and S. Takahashi, 2005: Assessment of glacier shrinkage from the maximum in the Little Ice Age in the Suntar-Khayata Range, North-East Siberia. *Bulletin of Glaciological Research*, **22**, 9-17.
- **Ananicheva,** M.D., G.A. Kapustin, and M.M. Koreysha, 2006: Glacier changes in Suntar-Khayata mountains and Chersky Range from the Glacier Inventory of the USSR and satellite images 2001–2003. *Data of glaciologic studies, Moscow*, 163-169.
- **Angelsen,** A., 2009: *Realizing REDD+: National strategy and policy options*. CIFOR, 362 pp. www.oecd.org/env/cc/45153979.pdf.
- Anisimov, O.A., Y.A. Anokhin, L.I. Boltneva, E.A. Vaganov, G.V. Gruza, A.S. Zaitsev, A.N. Zolotokrylin, Y.A. Izrael, G.E. Insarov, I.L. Karol, V.M. Kattsov, N.V. Kobysheva, A.G. Kostianoy, A.N. Krenke, A.V. Mescherskaya, V.M. Mirvis, V.V. Oganesyan, A.V. Pchelkin, B.A. Revich, A.I. Reshetnikov, V.A. Semenov, O.D. Sirotenko, P.V. Sporyshev, F.S. Terziev, I.E. Frolov, V.C. Khon, A.V. Tsyban, B.G. Sherstyukov, I.A. Shiklomanov, and V.V. Yasukevich, 2008a: Assessment Report on Climate Change and its Consequences in Russian Federation General Summary. Federal Service for Hydrometeorology and Environmental Monitoring (Roshydroment), Moscow, Russia, 25 pp.
- Anisimov, O.A., Y.A. Anokhin, A.N. Krenke, M.D. Ananicheva, P.M. Lurie, and L.T. Myach, 2008b: Continental Permafrost and Glaciers. In: Assessment Report on Climate Change and its Consequences in Russian Federation. Volume II Climate Change Consequences. Planeta Publishing, Moscow, pp. 124-134.
- **Aono,** Y. and K. Kazui, 2008: Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. *International Journal of Climatology*, **28** (7), 905-914.
- Archer, D.R., N. Forsythe, H.J. Fowler, and S.M. Shah, 2010: Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions. *Hydrology and Earth System Sciences*, 14 (8), 1669-1680.
- **Attri,** S.D. and A. Tyagi, 2010: *Climate Profile of India*. India Meteorological Department, Ministry of Earth Sciences, New Delhi, India, 122 pp.
- **Bai,** J., Q. Ge, and J. Dai, 2011: The response of first flowering dates to abrupt climate change in Beijing. *Advances in Atmospheric Sciences*, **28** (3), 564-572.
- **Barnett,** J.R. and M. Webber, 2010: Accommodating migration to promote adaptation to climate change. World Bank Policy Research Working Paper, 62 pp. http://www.ccdcommission.org/Filer/documents/Accommodating%20Migration.pdf.

- **Barrett,** C.B., B.J. Barnett, M.R. Carter, S. Chantarat, J.W. Hansen, A.G. Mude, D.E. Osgood, J.R. Skees, C.G. Turvey, and M.N. Ward, 2007: *Poverty traps and climate and weather risk: Limitations and opportunities of index-based risk financing* IRI Technical Report 07-03, 57 pp. http://preventionweb.net/go/8079.
- **Black,** R., W.N. Adger, N.W. Arnell, S. Dercon, A. Geddes, and D. Thomas, 2011: The effect of environmental change on human migration. *Global Environmental Change*, **21, Supplement 1 (0)**, S3-S11.
- **Blok,** D., U. Sass-Klaassen, G. Schaepman-Strub, M.M.P.D. Heijmans, P. Sauren, and F. Berendse, 2011: What are the main climate drivers for shrub growth in Northeastern Siberian tundra? *Biogeosciences*, **8** (5), 1169-1179.
- **Bolch,** T., 2007: Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. *Global and Planetary Change*, **56** (**1-2**), 1-12.
- **Brutsaert,** W. and M. Sugita, 2008: Is Mongolia's groundwater increasing or decreasing? The case of the Kherlen River basin. *Hydrological Sciences Journal-Journal Des Sciences Hydrologiques*, **53** (6), 1221-1229.
- Burke, L., K. Reytar, M. Spalding, and A. Perry, 2011: Reefs at risk revisited. Washington, DC: World Resources Institute.
- **Byg,** A. and J. Salick, 2009: Local perspectives on a global phenomenon—climate change in Eastern Tibetan villages. *Global Environmental Change*, **19** (2), 156-166.
- Cai, H., S. Zhang, and X. Yang, 2012: Forest dynamics and their phenological response to climate warming in the Khingan Mountains, Northeastern China. *International journal of environmental research and public health*, **9** (11), 3943-3953.
- **Champathong,** A., D. Komori, M. Kiguchi, T. Sukhapunnaphan, T. Oki, and T. Nakaegawa, 2013: Future projection of mean river discharge climatology for the Chao Phraya River basin. *Hydrological Research Letters*, 7 (2), 36-41.
- **Chaturvedi,** R.K., R. Gopalakrishnan, M. Jayaraman, G. Bala, N.V. Joshi, R. Sukumar, and N.H. Ravindranath, 2011: Impact of climate change on Indian forests: a dynamic vegetation modeling approach. *Mitigation and Adaptation Strategies for Global Change*, **16** (2), 119-142.
- **Chaudhry,** Q.-u.-Z., A. Mahmood, G. Rasul, and M. Afzaal, 2009: *Climate Change Indicators of Pakistan*. Pakistan Meteorological Department, Islamabad, Pakistan, 43 pp.
- **Chen,** I.C., J.K. Hill, H.J. Shiu, J.D. Holloway, S. Benedick, V.K. Chey, H.S. Barlow, and C.D. Thomas, 2011: Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. *Global Ecology and Biogeography*, **20** (1), 34-45.
- Chen, X. and L. Xu, 2012: Phenological responses of *Ulmus pumila* (Siberian Elm) to climate change in the temperate zone of China. *International journal of biometeorology*, **56** (4), 695-706.
- Chen, Y.-n., W.-h. Li, C.-c. Xu, and X.-m. Hao, 2007: Effects of climate change on water resources in Tarim River Basin, Northwest China. *Journal of Environmental Sciences*, **19** (**4**), 488-493.
- Chen, Y., C. Xu, X. Hao, W. Li, Y. Chen, C. Zhu, and Z. Ye, 2009: Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. *Quaternary International*, **208**, 53-61.
- Chen, Z., Y. Chen, and B. Li, 2013: Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China. *Theoretical and Applied Climatology*, **111** (**3-4**), 537-545.
- **Cheng,** G.D. and T.H. Wu, 2007: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. *Journal of Geophysical Research-Earth Surface*, **112** (**F2**), F02S03.
- **Chenoweth,** J., P. Hadjinicolaou, A. Bruggeman, J. Lelieveld, Z. Levin, M.A. Lange, E. Xoplaki, and M. Hadjikakou, 2011: Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: Modeled 21st century changes and implications. *Water Resources Research*, **47** (6), W06506.
- **Chhatre,** A. and A. Agrawal, 2009: Trade-offs and synergies between carbon storage and livelihood benefits from forest communities. *The National Academy of Sciences of the United States of America*, **106**, 17667-17670.
- **Chung,** S.O., J.A. Rodriguez-Diaz, E.K. Weatherhead, and J.W. Knox, 2011: Climate Change Impacts on Water for Irrigating Paddy Rice in South Korea. *Irrigation and Drainage*, **60** (2), 263-273.
- **Coles,** S.L. and B.M. Riegl, 2013: Thermal tolerances of reef corals in the Gulf: A review of the potential for increasing coral survival and adaptation to climate change through assisted translocation. *Marine Pollution Bulletin*, **72** (2), 323-332.
- Cong, N., T. Wang, H. Nan, Y. Ma, X. Wang, R.B. Myneni, and S. Piao, 2013: Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. *Global Change Biology*, **19** (3), 881-891.

- Cook, E., P. Krusic, K. Anchukaitis, B. Buckley, T. Nakatsuka, M. Sano, and XXXX, 2013: Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. *Climate Dynamics*, 10.1007/s00382-012-1611-x
- **Dagvadorj,** D., L. Natsagdorj, J. Dorjpurev, and B. Namkhainyam, 2009: *Mongolia Assessment Report on Climate Change* 2009. Ministry of Environment, Nature and Tourism, Ulaanbaatar, Mongolia, 228 pp.
- **Dai,** J., W. H., and Q. Ge, 2013a: The spatial pattern of leaf phenology and its response to climate change in China. *International journal of biometeorology*, **10.1007/s00484-013-0679-2**.
- **Dai,** J., H. Wang, and Q. Ge, 2013b: Multiple phenological responses to climate change among 42 plant species in Xi'an, China. *International journal of biometeorology*, **57** (**5**), 749-758.
- **Dai,** J., H. Wang, and Q. Ge, 2013c: The decreasing spring frost risks during the flowering period for woody plants in temperate area of eastern China over past 50 years. *Journal of Geographical Sciences*, **23** (4), 641-652.
- **Dasgupta,** S., B. Laplante, C. Meisner, D. Wheeler, and J. Yan, 2009: The impact of sea level rise on developing countries: a comparative analysis. *Climatic Change*, **93** (3-4), 379-388.
- **De Costa,** W.A.J.M., 2008: Climate change in Sri Lanka: myth or reality? Evidence from long-term meteorological data. *Journal of the National Science Foundation of Sri Lanka*, **36**, 63-88.
- de Jong, R., J. Verbesselt, M.E. Schaepman, and S. de Bruin, 2012: Trend changes in global greening and browning: contribution of short-term trends to longer-term change. *Global Change Biology*, **18** (2), 642-655.
- **De Silva,** C.S., E.K. Weatherhead, J.W. Knox, and J.A. Rodriguez-Diaz, 2007: Predicting the impacts of climate change—A case study of paddy irrigation water requirements in Sri Lanka. *Agricultural Water Management*, **93** (1–2), 19-29.
- **Ding,** M., Y. Zhang, X. Sun, L. Liu, Z. Wang, and W. Bai, 2013: Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. *Chinese Science Bulletin*, **58** (3), 396-405.
- **Ding,** Y.J., S.Y. Liu, J. Li, and D.H. Shangguan, 2006: The retreat of glaciers in response to recent climate warming in western China. *Annals of Glaciology*, **43**, 97-105.
- **Doi,** H., 2007: Winter flowering phenology of Japanese apricot *Prunus mume* reflects climate change across Japan. *Climate Research*, **34 (2)**, 99-104.
- **Doi,** H. and I. Katano, 2008: Phenological timings of leaf budburst with climate change in Japan. *Agricultural and Forest Meteorology*, **148** (3), 512-516.
- **Doi,** H., 2012: Response of the *Morus bombycis* growing season to temperature and its latitudinal pattern in Japan. *International journal of biometeorology*, **56** (**5**), 895-902.
- **Dulamsuren,** C., M. Hauck, and C. Leuschner, 2010a: Recent drought stress leads to growth reductions in *Larix sibirica* in the western Khentey, Mongolia. *Global Change Biology*, **16** (**11**), 3024-3035.
- **Dulamsuren,** C., M. Hauck, M. Khishigjargal, H.H. Leuschner, and C. Leuschner, 2010b: Diverging climate trends in Mongolian taiga forests influence growth and regeneration of *Larix sibirica*. *Oecologia*, **163** (4), 1091-1102.
- Eliseev, A.V., M.M. Arzhanov, P.F. Demchenko, and Mokhov, II, 2009: Changes in climatic characteristics of Northern Hemisphere extratropical land in the 21st century: Assessments with the IAP RAS climate model. *Izvestiya Atmospheric and Oceanic Physics*, **45** (3), 271-283.
- **Fujisawa,** M. and K. Kobayashi, 2010: Apple (*Malus pumila* var. *domestica*) phenology is advancing due to rising air temperature in northern Japan. *Global Change Biology*, **16** (**10**), 2651-2660.
- Gabrielyan, A., D. Harutyunyan, N. Aslanyan, and R. Stepanyan, 2010: Second National Communication: Under the United Nations Framework Convention on Climate Change. Ministry of Nature Protection, Yerevan, Armenia, 132 pp.
- **Ganguly,** N.D., 2011: Investigating the possible causes of climate change in India with satellite measurements. *International Journal of Remote Sensing*, **32** (3), 687-700.
- **Ge,** Q., H. Wang, and J. Dai, 2013a: Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-first century. *International journal of biometeorology*, **10.1007/s00484-013-0671-x**.
- **Ge,** Q., J. Dai, J. Liu, S. Zhong, and H. Liu, 2013b: The effect of climate change on the fall foliage vacation in China. *Tourism Management*, **38**, 80-84.
- **Ginn,** W.L., T.C. Lee, and K.Y. Chan, 2009: Past and future changes in the climate of Hong Kong. *Acta Meteorologica Sinica*, **24** (2), 163-175.
- **Golubyatnikov**, L.L. and E.A. Denisenko, 2007: Model estimates of climate change impact on habitats of zonal vegetation for the plain territories of Russia. *Biology Bulletin*, **34** (2), 170-184.

- **Guest,** J.R., A.H. Baird, J.A. Maynard, E. Muttaqin, A.J. Edwards, S.J. Campbell, K. Yewdall, Y.A. Affendi, and L.M. Chou, 2012: Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. *PLoS ONE*, **7** (3), e33353.
- **Guo,** L., J. Dai, S. Ranjitkar, J. Xu, and E. Luedeling, 2013: Response of chestnut phenology in China to climate variation and change. *Agricultural and Forest Meteorology*, **180** (0), 164-172.
- **Hao,** X., Y. Chen, C. Xu, and W. Li, 2008: Impacts of climate change and human activities on the surface runoff in the Tarim River basin over the last fifty years. *Water resources management*, **22** (9), 1159-1171.
- **Heltberg,** R., R. Prabhu, and H. Gitay, 2010: *Community-based adaptation: Lessons from the development marketplace 2009 on adaptation to climate change* FEEM Working Paper No 84, 59 pp.
- **Hertel,** T.W., M.B. Burke, and D.B. Lobell, 2010: The poverty implications of climate-induced crop yield changes by 2030. *Global Environmental Change*, **20** (4), 577-585.
- **Hoegh-Guldberg**, O., 2011: Coral reef ecosystems and anthropogenic climate change. *Regional Environmental Change*, **11** (Suppl 1) (Climate hotspots: key vulnerable regions, climate change and limits to warming), S215-S227.
- **Hsu,** H.-H., C.-T. Chen, M.-M. Lu, Y.-M. Chen, C. Chou, and Y.-C. Wu, 2011: 2011 Taiwan Scientific Report on Climate Change. Policy and Law Center for Environmental Sustainability, National Taiwan University, Taipei, Taiwan, 362 pp.
- **Hussain,** S.S. and M. Mudasser, 2007: Prospects for wheat production under changing climate in mountain areas of Pakistan An econometric analysis. *Agricultural Systems*, **94** (2), 494-501.
- **Iliasov,** S.A., O.A. Podrezov, and E.M. Rodina, 2003: First National Communication of the Kyrgyz Republic under the UN Framework Convention on Climate Change. Ministry of Ecology and Emergencies, Bishkek, Kyrgyzstan, 98 pp.
- **Iqbal,** M.C.M., 2010: *Vulnerability and Adaptation Assessment*. Climate Change Division of the Ministry of Environment and Natural Resources, Sri Lanka, 265 pp.
- **Ishioka,** R., O. Muller, T. Hiura, and G. Kudo, 2013: Responses of leafing phenology and photosynthesis to soil warming in forest-floor plants. *Acta Oecologica-International Journal of Ecology*, **51**, 34-41.
- **Janvry,** A. and E. Sadoulet, 2010: Agricultural growth and poverty reduction: Additional evidence. *The World Bank Research Observer*, **25** (1), 1-20.
- **Jarvis,** A., C. Lau, S. Cook, E. Wollenberg, J. Hansen, O. Bonilla, and A. Challinor, 2011: An integrated adaptation and mitigation framework for developing agricultural research: Synergies and tradeoffs. *Experimental Agriculture*, **47**, 185-203.
- **Jiang,** S., L. Ren, B. Yong, V.P. Singh, X. Yang, and F. Yuan, 2011: Quantifying the effects of climate variability and human activities on runoff from the Laohahe basin in northern China using three different methods. *Hydrological Processes*, **25** (**16**), 2492-2505.
- **Jie**, B., C. Xi, Y. Liao, and F. Hui, 2012: Monitoring variations of inland lakes in the arid region of Central Asia. *Frontiers of Earth Science*, **6** (2), 147-156.
- JMA, 2011: Climate Change Monitoring Report 2010. Japan Meteorological Agency, Tokyo, Japan, 106 pp.
- **Jump,** A.S., T.J. Huang, and C.H. Chou, 2012: Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. *Ecography*, **35** (3), 204-210.
- Karimov, U., A. Kayumov, B. Makhmadaliev, N. Mustaeva, V. Novikov, and I. Rajabov, 2008: *The Second National Communication of the Republic of Tajikistan under the United Nations Framework Convention on Climate Change*. The State Agency for Hidrometeorology, Committee for environmental protection, Dushanbe, Tajikistan, 89 pp.
- **Karki,** M., P. Mool, and A. Shrestha, 2009: Climate Change and its Increasing Impacts in Nepal. *The Initiation*, 3, 30-37.
- **Kelkar,** U., K.K. Narula, V.P. Sharma, and U. Chandna, 2008: Vulnerability and adaptation to climate variability and water stress in Uttarakhand State, India. *Global Environmental Change*, **18** (**4**), 564-574.
- **Kharuk,** V.I., K.J. Ranson, S.T. Im, and M.M. Naurzbaev, 2006: Forest-tundra larch forests and climatic trends. *Russian Journal of Ecology*, **37** (**5**), 291-298.
- **Kharuk,** V.I., K.J. Ranson, and M.L. Dvinskaya, 2010a: Evidence of evergreen conifers invasion into larch dominated forests during recent decades. In: *Environmental Change in Siberia: Earth Observation, Field Studies and Modelling* [Balzter, H. (ed.)], pp. 53-65.

- **Kharuk,** V.I., K.J. Ranson, M.L. Dyinskaya, and S.T. Im, 2010b: Siberian pine and larch response to climate warming in the southern Siberian mountain forest: tundra ecotone. In: *Environmental Change in Siberia: Earth Observation, Field Studies and Modelling* [Balzter, H. (ed.)], pp. 115-132.
- **Khromova,** T.E., M.B. Dyurgerov, and R.G. Barry, 2003: Late-twentieth century changes in glacier extent in the Ak-shirak Range, Central Asia, determined from historical data and ASTER imagery. *Geophysical Research Letters*, **30** (16), Doi 10.1029/2003gl017233.
- **Kim,** B.S., H.S. Kim, B.H. Seoh, and N.W. Kim, 2007: Impact of climate change on water resources in Yongdam Dam Basin, Korea. *Stochastic Environmental Research and Risk Assessment*, **21** (4), 355-373.
- **Kim,** M.-K., D.K. Lee, S. Lee, Y. Hong, C.-K. Song, and A.Y. Jeong, 2010: *Korean Climate Change Assessment Report 2010*. Ministry of Environment, National Institutute of Environmental Research, Incheon, Korea, 190 pp.
- **Kim,** N., 2012: How much more exposed are the poor to natural disasters? Global and regional measurement. *Disasters*, **36** (2), 195-211.
- **Kovacs,** K., C. Lydersen, J. Overland, and S. Moore, 2011: Impacts of changing sea-ice conditions on Arctic marine mammals. *Marine Biodiversity*, **41** (1), 181-194.
- **Krishnan,** P., S.D. Roy, G. George, R.C. Srivastava, A. Anand, S. Murugesan, M. Kaliyamoorthy, N. Vikas, and R. Soundararajan, 2011: Elevated sea surface temperature during May 2010 induces mass bleaching of corals in the Andaman. *Current Science*, **100** (1), 111-117.
- **Kryukova,** V., S. Dolgikh, V. Idrissova, A. Cherednichenko, and G. Sergezina, 2009: *Kazakhstan's Second National Communication to the Conference of the Parties of the United Nations Framework Convention on Climate Change*. Ministry of Environment Protection, Astana, Kazakhstan, 164 pp.
- **Kulkarni,** S. and N. Rao, 2008: Gender and Drought in South Asia: Dominant Constructions and Alternate Propositions. *Droughts and Integrated Water Resource Management in South Asia: Issues, Alternatives and Futures*, **2**, 70.
- **Lal**, M., 2003: Global climate change: India's monsoon and its variability. *Journal of Environmental Studies and Policy*, **6** (1), 1-34.
- **Lantuit,** H., P.P. Overduin, N. Couture, S. Wetterich, F. Ar, D. Atkinson, J. Brown, G. Cherkashov, D. Drozdov, and D.L. Forbes, 2012: The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines. *Estuaries and Coasts*, **35**, 383-400.
- **Lasco,** R.D., C.M.D. Habito, R.J.P. Delfino, F.B. Pulhin, and R.N. Concepcion, 2011: *Climate Change Adaptation for Smallholder Farmers in Southeast Asia* World Agroforestry Centre, Laguna, Philippines, 65 pp.
- Li, B.L., A.X. Zhu, Y.C. Zhang, T. Pei, C.Z. Qin, and C.H. Zhou, 2006: Glacier change over the past four decades in the middle Chinese Tien Shan. *Journal of Glaciology*, **52** (**178**), 425-432.
- Li, Q.X., W.J. Dong, W. Li, X.R. Gao, P. Jones, J. Kennedy, and D. Parker, 2010: Assessment of the uncertainties in temperature change in China during the last century. *Chinese Science Bulletin*, **55** (19), 1974-1982.
- **Li,** R.-p. and G.-s. Zhou, 2010: Responses of woody plants phenology to air temperature in Northeast China in 1980-2005. *Shengtaixue Zazhi*, **29** (12), 2317-2326.
- Li, X., G. Cheng, H. Jin, E. Kang, T. Che, R. Jin, L. Wu, Z. Nan, J. Wang, and Y. Shen, 2008: Cryospheric change in China. *Global and Planetary Change*, 62 (3–4), 210-218.
- **Li,** Z., N. Wu, X. Gao, Y. Wu, and K.P. Oli, 2013: Species-level phenological responses to 'global warming' as evidenced by herbarium collections in the Tibetan Autonomous Region. *Biodiversity and Conservation*, **22** (1), 141-152.
- **Liang,** T., Q. Feng, H. Yu, X. Huang, H. Lin, S. An, and J. Ren, 2012: Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data. *Grassland Science*, **58** (4), 208-220.
- **Lioubimtseva**, E. and G.M. Henebry, 2009: Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. *Journal of Arid Environments*, **73** (11), 963-977.
- Liu, D., X. Chen, Y. Lian, and Z. Lou, 2010: Impacts of climate change and human activities on surface runoff in the Dongjiang River basin of China. *Hydrological Processes*, **24** (**11**), 1487-1495.
- Liu, S., Y. Ding, D. Shangguan, Y. Zhang, J. Li, H. Han, J. Wang, and C. Xie, 2006: Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. *Annals of Glaciology*, 43 (1), 91-96.
- **Liu,** T., P. Willems, X.L. Pan, A.M. Bao, X. Chen, F. Veroustraete, and Q.H. Dong, 2011: Climate change impact on water resource extremes in a headwater region of the Tarim basin in China. *Hydrology and Earth System Sciences*, **15** (11), 3511-3527.

- **Lloyd,** A.H., A.G. Bunn, and L. Berner, 2011: A latitudinal gradient in tree growth response to climate warming in the Siberian taiga. *Global Change Biology*, **17** (**5**), 1935-1945.
- **Ma,** T. and C. Zhou, 2012: Climate-associated changes in spring plant phenology in China. *International journal of biometeorology*, **56** (2), 269-275.
- **Ma,** Z., S. Kang, L. Zhang, L. Tong, and X. Su, 2008: Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. *Journal of Hydrology*, **352** (**3-4**), 239-249.
- **Macchi,** M., G. Oviedo, S. Gotheil, K. Cross, A. Boedhihartono, C. Wolfangel, and M. Howell, 2008: *Indigenous and Traditional Peoples and Climate Change*. 66 pp. ttp://cmsdata.iucn.org/downloads/indigenous peoples climate change.pdf.
- **Marchenko,** S.S., A.P. Gorbunov, and V.E. Romanovsky, 2007: Permafrost warming in the Tien Shan Mountains, Central Asia. *Global and Planetary Change*, **56** (**3-4**), 311-327.
- **MEXT**, JMA, and MOE, 2009: *Climate Change and Its Impacts in Japan*. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan Meteorological Agency (JMA), Ministry of the Environment (MOE), Tokyo, Japan, 74 pp.
- **MNPT**, 2000: *Initial National Communication on Climate Change*. Ministry of Nature Protection of Turkmenistan (MNPT), Ashgabat, Turkmenistan, 89 pp.
- **Morton,** J.F., 2007: The impact of climate change on smallholder and subsistence agriculture. *Proceedings of the National Academy of Sciences of the United States of America*, **104** (**50**), 19680-19685.
- **MRC**, 2009: Adaptation to climate change in the countries of the Lower Mekong Basin: regional synthesis report. MRC Technical Paper 24 www.mrcmekong.org/.../tech-No24-adaptation-to-climate-change.pd.
- **Myers-Smith,** I.H., D.S. Hik, C. Kennedy, D. Cooley, J.F. Johnstone, A.J. Kenney, and C.J. Krebs, 2011: Expansion of canopy-forming willows over the twentieth century on Herschel Island, Yukon Territory, Canada. *AMBIO*, **40** (**6**, **Sp. Iss. SI**), 610-623.
- Nagai, S., G. Yoshida, and K. Tarutani, 2011: Change in species composition and distribution of algae in the coastal waters of western Japan. In: *Global Warming Impacts Case Studies on the Economy, Human Health, and on Urban and Natural Environments*. [Casalegno, S. (ed.)]. InTech, Shanghai, pp. 209-237.
- Narama, C., Y. Shimamura, D. Nakayama, and K. Abdrakhmatov, 2006: Recent changes of glacier coverage in the western Terskey-Alatoo range, Kyrgyz Republic, using Corona and Landsat. *Annals of Glaciology*, 43, 223-229.
- **Niederer,** P., V. Bilenko, N. Ershova, H. Hurni, S. Yerokhin, and D. Maselli, 2008: Tracing glacier wastage in the Northern Tien Shan (Kyrgyzstan/Central Asia) over the last 40 years. *Climatic Change*, **86** (1-2), 227-234.
- **Ogawa-Onishi,** Y. and P.M. Berry, 2013: Ecological impacts of climate change in Japan: The importance of integrating local and international publications. *Biological Conservation*, **157** (0), 361-371.
- **Ohta,** S. and A. Kimura, 2007: Impacts of climate changes on the temperature of paddy waters and suitable land for rice cultivation in Japan. *Agricultural and Forest Meteorology*, **147** (3–4), 186-198.
- **Olsson,** O., M. Gassmann, K. Wegerich, and M. Bauer, 2010: Identification of the effective water availability from streamflows in the Zerafshan river basin, Central Asia. *Journal of Hydrology*, **390** (**3-4**), 190-197.
- Ortiz, R., K.D. Sayre, B. Govaerts, R. Gupta, G.V. Subbarao, T. Ban, D. Hodson, J.M. Dixon, J. Iván Ortiz-Monasterio, and M. Reynolds, 2008: Climate change: Can wheat beat the heat? *Agriculture, Ecosystems & Environment*, 126 (1–2), 46-58.
- **Osawa,** A., Y. Matsuura, and T. Kajimoto, 2010: Characteristics of permafrost forests in Siberia and potential responses to warming climate. In: *Permafrost Ecosystems: Siberian Larch Forests* [Osawa, A., O.A. Zyryanova, Y. Matsuura, T. Kajimoto, and R.W. Wein (eds.)]. Springer, Berlin, pp. 459-481.
- **PAGASA**, 2011: *Climate Change in the Philippines*. Philippine Atmospheric, Geophysical and Astronomical Services Administration, Quezon City, Philippines, 85 pp.
- **Panday**, P.K. and B. Ghimire, 2012: Time-series analysis of NDVI from AVHRR data over the Hindu Kush-Himalayan region for the period 1982-2006. *International Journal of Remote Sensing*, **33** (21), 6710-6721.
- **Pavlidis,** Y.A., S.L. Nikiforov, S.A. Ogorodov, and G.A. Tarasov, 2007: The Pechora sea: Past, recent, and future. *Oceanology*, **47** (**6**), 865-876.
- **Peras,** R.J.J., J.M. Pulhin, R.D. Lasco, R.V.O. Cruz, and F.B. Pulhin, 2008: Climate variability and extremes in the Pantabangan-Carranglan Watershed, Philippines: Assessment of impacts and adaptation practices. *Journal of Environmental Science and Management*, **11** (2), 14-31.
- **Piao,** S., M. Cui, A. Chen, X. Wang, P. Ciais, J. Liu, and Y. Tang, 2011: Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. *Agricultural and Forest Meteorology*, **151** (12), 1599-1608.

- Post, E., U.S. Bhatt, C.M. Bitz, J.F. Brodie, T.L. Fulton, M. Hebblewhite, J. Kerby, S.J. Kutz, I. Stirling, and D.A. Walker, 2013: Ecological consequences of sea-ice decline. *Science*, **341** (**6145**), 519-524.
- **Prentice,** M.L. and S. Glidden, 2010: Glacier crippling and the rise of the snowline in western New Guinea (Papua Province, Indonesia) from 1972 to 2000. In: *Altered Ecologies: Fire, Climate and Human Influence on Terrestrial Landscapes* [Haberle, S.G., J. Stevenson, and M. Prebble (eds.)], pp. 457-471.
- Ren, G., Y. Ding, Z. Zhao, J. Zheng, T. Wu, G. Tang, and Y. Xu, 2012: Recent progress in studies of climate change in China. *Advances in Atmospheric Sciences*, 29 (5), 958-977.
- Romanovsky, V.E., A.L. Kholodov, S.S. Marchenko, N.G. Oberman, D.S. Drozdov, G.V. Malkova, N.G. Moskalenko, A.A. Vasiliev, D.O. Sergeev, and M.N. Zheleznyak, 2008: Thermal State and Fate of Permafrost in Russia: First results of IPY. In: *Ninth International Conference on Permafrost, Vol. 1* [Kane, D.L., and K.M. Hinkel (eds.)]. Proceedings of the Ninth International Conference on Permafrost, June 29 July 3, 2008, pp.1511-1518.
- Romanovsky, V.E., D.S. Drozdov, N.G. Oberman, G.V. Malkova, A.L. Kholodov, S.S. Marchenko, N.G. Moskalenko, D.O. Sergeev, N.G. Ukraintseva, A.A. Abramov, D.A. Gilichinsky, and A.A. Vasiliev, 2010: Thermal state of permafrost in Russia. *Permafrost and Periglacial Processes*, 21 (2), 136-155.
- **Rosegrant,** M.W., 2011: *Impacts of climate change on food security and livelihoods*. Food security and climate change in dry areas: proceedings of an International Conference, 1-4 February 2010, Amman, Jordan, 24-26.
- Salick, J. and N. Ross, 2009: Traditional peoples and climate change. *Global Environmental Change*, **19** (2), 137-139.
- Sato, Y., T. Kojiri, Y. Michihiro, Y. Suzuki, and E. Nakakita, 2012: Estimates of Climate Change Impact on River Discharge in Japan Based on a Super-High-Resolution Climate Model. *Terrestrial Atmospheric and Oceanic Sciences*, 23 (5), 527-540.
- **Savage,** M., B. Dougherty, M. Hamza, R. Butterfield, and S. Bharwani, 2009: *Socio-Economic Impacts of Climate Change in Afghanistan*. Stockhold Environment Institute, Oxford, UK, 38 pp.
- Shahid, S., 2010: Recent trends in the climate of Bangladesh. Climate Research, 42 (3), 185-193.
- **Sharkhuu,** N., A. Sharkhuu, V.E. Romanovsky, K. Yoshikawa, F.E. Nelson, and N.I. Shiklomanov, 2008: Thermal State of Permafrost in Mongolia. In: *Ninth International Conference on Permafrost, Vol. 1* [Kane, D.L., and K.M. Hinkel (eds.)]. Proceedings of the Ninth International Conference on Permafrost, June 29 July 3, 2008, pp.1633-1638.
- **Sharma,** H.C., C.P. Srivastava, C. Durairaj, and C.L.L. Gowda, 2010: Pest management in grain legumes and climate change. In: *Climate Change and Management of Cool Season Grain Legume Crops* [Yadav, S.S., and R. Redden (eds.)]. Springer Netherlands, pp. 115-139.
- **Shinohara,** Y., T.o. Kumagai, K. Otsuki, A. Kume, and N. Wada, 2009: Impact of climate change on runoff from a mid-latitude mountainous catchment in central Japan. *Hydrological Processes*, **23** (**10**), 1418-1429.
- **Shrestha,** A.B., C.P. Wake, P.A. Mayewski, and J.E. Dibb, 1999: Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971-94. *Journal of Climate*, **12** (9), 2775-2786.
- **Shrestha,** A.B. and R. Aryal, 2011: Climate change in Nepal and its impact on Himalayan glaciers. *Regional Environmental Change*, **11**, S65-S77.
- **Shrestha,** U.B., S. Gautam, and K.S. Bawa, 2012: Widespread climate change in the Himalayas and associated changes in local ecosystems. *PLoS ONE*, **7** (**5**), e36741-e36741.
- **Skoufias,** E., M. Rabassa, and S. Olivieri, 2011: The poverty impacts of climate change: a review of the evidence. *World Bank Policy Research Working Paper Series, Vol.*
- **Song,** Y., H.W. Linderholm, D. Chen, and A. Walther, 2010: Trends of the thermal growing season in China, 1951-2007. *International Journal of Climatology*, **30** (1), 33-43.
- **Srivastava,** A., S. Naresh Kumar, and P.K. Aggarwal, 2010: Assessment on vulnerability of sorghum to climate change in India. *Agriculture, Ecosystems and Environment*, **138** (3–4), 160-169.
- **Stokes,** C.R., M. Shahgedanova, I.S. Evans, and V.V. Popovnin, 2013: Accelerated loss of alpine glaciers in the Kodar Mountains, south-eastern Siberia. *Global and Planetary Change*, **101** (**0**), 82-96.
- Suxia, L., M. Xingguo, L. Zhonghui, X. Yueqing, J. Jinjun, W. Gang, and J. Richey, 2010: Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. *Agricultural Water Management*, 97 (8), 1195-1209.
- **Tanner**, T. and T. Mitchell, 2008: Entrenchment or Enhancement: Could Climate Change Adaptation Help to Reduce Chronic Poverty? *IDS Bulletin*, **39** (**4**), 6-15.

- **Tao,** F., Y. Hayashi, Z. Zhang, T. Sakamoto, and M. Yokozawa, 2008: Global warming, rice production, and water use in China: Developing a probabilistic assessment. *Agricultural and Forest Meteorology*, **148** (1), 94-110.
- **Tao,** F. and Z. Zhang, 2010: Impacts of climate change as a function of global mean temperature: maize productivity and water use in China. *Climatic Change*, **105** (**3-4**), 409-432.
- **Tao,** F. and Z. Zhang, 2013: Climate Change, High-Temperature Stress, Rice Productivity, and Water Use in Eastern China: A New Superensemble-Based Probabilistic Projection. *Journal of Applied Meteorology and Climatology*, **52** (3), 531-551.
- **Tchebakova**, N., G. Rehfeldt, and E. Parfenova, 2010: From vegetation zones to climatypes: effects of climate warming on Siberian ecosystems. In: *Permafrost Ecosystems*. Springer, pp. 427-446.
- **Thomas,** R.J., 2008: Opportunities to reduce the vulnerability of dryland farmers in Central and West Asia and North Africa to climate change. *Agriculture, Ecosystems & Environment*, **126** (1-2), 36-45.
- **Thomson,** A.M., R.C. Izaurralde, N.J. Rosenberg, and X. He, 2006: Climate change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China. *Agriculture, Ecosystems & Environment*, **114** (2–4), 195-209.
- **Tian,** Y., H. Kidokoro, T. Watanabe, Y. Igeta, H. Sakaji, and S. Ino, 2012: Response of yellowtail, *Seriola quinqueradiata*, a key large predatory fish in the Japan Sea, to sea water temperature over the last century and potential effects of global warming. *Journal of Marine Systems*, **91** (1), 1-10.
- **Tiwari,** P.C. and B. Joshi, 2012: Environmental Changes and Sustainable Development of Water Resources in the Himalayan Headwaters of India. *Water resources management*, **26** (4), 883-907.
- **Tsai,** A.-Y. and W.-C. Huang, 2011: Impact of Climate Change on Water Resources in Taiwan. *Terrestrial Atmospheric and Oceanic Sciences*, **22** (5), 507-519.
- **Tsai,** A.-Y. and W.-C. Huang, 2012: Estimation of regional renewable water resources under the impact of climate change. *Paddy and Water Environment*, **10** (**2**), 129-138.
- van Aalst, M.K., T. Cannon, and I. Burton, 2008: Community level adaptation to climate change: The potential role of participatory community risk assessment. *Global Environmental Change-Human and Policy Dimensions*, **18** (1), 165-179.
- **Vilesov,** E.N., V.N. Uvarov, and Anonymous, 2001: Evolyutsiya sovremenngo oledeneniya Zailiyskogo Alatau v XX veke (The evolution of modern glaciation of the Zailiyskiy Alatau in the 20th century) Kazakh State University, Almaty, 252 pp.
- Wade, A.J., E. Black, D.J. Brayshaw, M. El-Bastawesy, P.A.C. Holmes, D. Butterfield, S. Nuimat, and K. Jamjoum, 2010: A model-based assessment of the effects of projected climate change on the water resources of Jordan. *Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences*, 368 (1931), 5151-5172.
- **Wang,** B., Q. Bao, B. Hoskins, G.X. Wu, and Y.M. Liu, 2008: Tibetan plateau warming and precipitation changes in East Asia. *Geophysical Research Letters*, **35** (**14**), L14702.
- Wang, H., J. Dai, and Q. Ge, 2012: The spatiotemporal characteristics of spring phenophase changes of *Fraxinus chinensis* in China from 1952 to 2007. *Science China-Earth Sciences*, **55** (**6**), 991-1000.
- Wang, J., Y. Hong, J. Gourley, P. Adhikari, L. Li, and F. Su, 2010: Quantitative assessment of climate change and human impacts on long-term hydrologic response: a case study in a sub-basin of the Yellow River, China. *International Journal of Climatology*, **30** (14), 2130-2137.
- Wang, T., S. Peng, X. Lin, and J. Chang, 2013: Declining snow cover may affect spring phenological trend on the Tibetan Plateau. *Proceedings of the National Academy of Sciences of the United States of America*, 110 (31), E2854-E2855.
- Wang, W., S. Peng, T. Yang, Q. Shao, J. Xu, and W. Xing, 2011: Spatial and Temporal Characteristics of Reference Evapotranspiration Trends in the Haihe River Basin, China. *Journal of Hydrologic Engineering*, **16** (3), 239-252.
- Warner, K., 2010: Global environmental change and migration: Governance challenges. *Global Environmental Change*, **20** (3), 402-413.
- **Wu,** Q.B. and T.J. Zhang, 2010: Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. *Journal of Geophysical Research-Atmospheres*, **115**, 12.
- Wu, R.-F., J.-G. Shen, W.-X. Yan, and H. Zhang, 2009: Impact of climate warming on phenophase of *Populus tomentosa* in Inner Mongolia. *Chinese Journal of Applied Ecology*, 20 (4), 785-790.
- **Wu,** X. and H. Liu, 2013: Consistent shifts in spring vegetation green-up date across temperate biomes in China, 1982-2006. *Global Change Biology*, **19** (**3**), 870-880.

- **Xia,** J. and S. Wan, 2013: Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. *Annals of Botany*, **111** (6), 1207-1217.
- **Xu,** J., R.E. Grumbine, A. Shrestha, M. Eriksson, X. Yang, Y. Wang, and A. Wilkes, 2009: The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. *Conservation Biology*, **23** (3), 520-530.
- **Xu,** K., J.D. Milliman, and H. Xu, 2010: Temporal trend of precipitation and runoff in major Chinese Rivers since 1951. *Global and Planetary Change*, **73** (**3-4**), 219-232.
- **Xu,** L. and X. Chen, 2013: Regional unified model-based leaf unfolding prediction from 1960 to 2009 across northern China. *Global Change Biology*, **19** (**4**), 1275-1284.
- **Xu,** Z.X., T.L. Gong, and J.Y. Li, 2008: Decadal trend of climate in the Tibetan Plateau regional temperature and precipitation. *Hydrological Processes*, **22** (**16**), 3056-3065.
- Yao, T., L. Thompson, W. Yang, W. Yu, Y. Gao, X. Guo, X. Yang, K. Duan, H. Zhao, B. Xu, J. Pu, A. Lu, Y. Xiang, D.B. Kattel, and D. Joswiak, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. *Nature Climate Change*, 2 (9), 663-667.
- Ye, B.S., D.Q. Yang, K.Q. Jiao, T.D. Han, Z.F. Jin, H.A. Yang, and Z.Q. Li, 2005: The Urumqi River source Glacier No. 1, Tianshan, China: Changes over the past 45 years. *Geophysical Research Letters*, 32 (21).
- Ye, X., Q. Zhang, L. Bai, and Q. Hu, 2011: A modeling study of catchment discharge to Poyang Lake under future climate in China. *Quaternary International*, 244 (2), 221-229.
- Yu, H., J. Xu, E. Okuto, and E. Luedeling, 2012: Seasonal response of grasslands to climate change on the Tibetan Plateau. *PLoS ONE*, 7 (11), e49230.
- **Yu,** P.-S. and Y.-C. Wang, 2009: Impact of climate change on hydrological processes over a basin scale in northern Taiwan. *Hydrological Processes*, **23** (**25**), 3556-3568.
- Yu, Z., P. Sun, S. Liu, J. Wang, and A. Everman, 2013a: Sensitivity of large-scale vegetation greenup and dormancy dates to climate change in the north-south transect of eastern China. *International Journal of Remote Sensing*, 34 (20), 7312-7328.
- Yu, Z., S. Liu, J. Wang, P. Sun, W. Liu, and D.S. Hartley, 2013b: Effects of seasonal snow on the growing season of temperate vegetation in China. *Global Change Biology*, 19 (7), 2182-2195.
- **Zhang,** B., J. Cao, Y. Bai, X. Zhou, Z. Ning, S. Yang, and L. Hu, 2013b: Effects of rainfall amount and frequency on vegetation growth in a Tibetan alpine meadow. *Climatic Change*, **118** (2), 197-212.
- **Zhang,** G., Y. Zhang, J. Dong, and X. Xiao, 2013a: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. *Proceedings of the National Academy of Sciences of the United States of America*, **110** (11), 4309-4314.
- **Zhang,** G.G., Y.M. Kang, G.D. Han, and K. Sakurai, 2011: Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. *Global Change Biology*, **17** (1), 377-389.
- **Zhang,** T., J. Zhu, and R. Wassmann, 2010: Responses of rice yields to recent climate change in China: An empirical assessment based on long-term observations at different spatial scales (1981–2005). *Agricultural and Forest Meteorology*, **150** (7–8), 1128-1137.
- **Zhao,** J., Y. Zhang, F. Song, Z. Xu, and L. Xiao, 2013: Phenological response of tropical plants to regional climate change in Xishuangbanna, south-western China. *Journal of Tropical Ecology*, **29**, 161-172.
- **Zhao,** L., Q.B. Wu, S.S. Marchenko, and N. Sharkhuu, 2010: Thermal state of permafrost and active layer in Central Asia during the International Polar Year. *Permafrost and Periglacial Processes*, **21** (2), 198-207.
- **Zheng,** J., S. Zhong, Q. Ge, Z. Hao, X. Zhang, and X. Ma, 2013: Changes of spring phenodates for the past 150 years over the Yangtze River Delta. *Journal of Geographical Sciences*, **23** (1), 31-44.